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TANGENT MODULUS THEORY FOR CYLINDRICAL
SHELLS: BUCKLING UNDER INCREASING LOAD*

STEVEN C. BATTERMAN

Division of Engineering Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania

Abstract-Analytical results are presented for axisymmetric plastic buckling of axially compressed cylindrical
shells which is initiated under increasing load. The rate of load increase is determined by forcing the loading
condition of the J 2 incremental theory of plasticity to be satisfied everywhere in the shell. Results complement
those found by using classical stability concepts. The analysis constitutes the formal generalization of tangent
modulus theory for plastic column behavior to axially compressed cylindrical shells.
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modulus of elasticity and tangent modulus, respectively
extensional strain rates of middle surface in meridional and circumferential directions, respectively,
equation (3)
second invariant of stress deviator
incipient extensional and flexural rigidities, respectively, equation (8)
shell thickness
length of cylinder
number of incipient half-waves in buckling velocity field
rates of stress resultants appearing in (1) and (2); directions defined in Fig. I
load at buckling
radius of cylinder
tangent modulus load, equation (17)
stress deviator
incipient velocity measured along a generator
incipient velocity measured normal to middle surface, Fig. 1
constants in velocity field, equations (15) and (32)
length coordinate measured along a generator
meridional and circumferential strain rates respectively, equation (6)
rates of meridional and circumferential stresses, respectively
thickness coordinate, Fig. 1
Poisson's ratio
Kronecker delta (j'j = I, i = j; (jij = 0, i oF j
generalized rates of strain of middle surface associated with bending, equation (3)
tangent modulus stress, Nt,n = (Jt,nh
ratio of modulus of elasticity to tangent modulus, E/ET

stress at buckling

1. INTRODUCTION

THE present paper is concerned with the incipient axisymmetric plastic buckling of
geometrically perfect axially compressed cylindrical shells which is initiated under
increasing load. This is the first step in the analysis for obtaining the maximum compressive
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load that the perfect system can withstand according to the principle advanced by Shanley
in his well-known papers [1,2]. However, rather than employing tedious step-by-step
calculations for a shell of a particular material and following the entire load-deformation
history until the maximum load is reached, the incipient results will be seen to provide a
foundation from which to make a reasonable general statement about the subsequent
maximum load.

Results contained herein are formally t"l}uivalent to tangent modulus theory for plastic
column behavior. It is worthwhile to recall here that the proper derivation of tangent
modulus theory for geometrically perfect pin-ended columns depends on the fact that at
incipient bifurcation the load must increase at a rate such that at the outer fiber of the
center cross-section of the column on the convex side the strain is stationary [3J. For the
uniaxial state of stress in columns this ensures that further instantaneous plastic loading
will occur at all other points, i.e. no points will unload elastically. However, for a combined
state of stress, the minimum rate of load increase, at the load at which bifurcation is first
possible, must be determined in such a manner that the particular loading criterion chosen
is forced to be just satisfied in those critical points where unloading would first begin.
It will be apparent from the analysis that for the simple. but reasonable, J 2 isotropic
incremental theory of material behavior, satisfying the loading criterion j 2 > 0 will be
equivalent to imposing a stationary strain condition at certain points only for a material
which is elastically incompressible. Also, it is to be especially noted that forcing the loading
condition to be satisfied will eliminate the apparent indeterminacy in the incipient
velocity field.

The effect of incipient membrane stretching will also be included in the analysis. The
membrane stretching term appears naturally and without assumptions (other than those
embodied in an engineering shell theory) in the rate equations employed. It will be shown
that membrane stretching increases both the load for first bifurcation and the slope of the
load-deflection curves but only by generally negligible amounts.

Using classical stability concepts, plastic buckling of axially compressed cylindrical
shells was studied in detail in a recent paper [4J. By classical stability concepts is meant
that buckling occurs under constant load from the idealized geometrically perfect con
figuration of the system. It was shown in [4J that classical concepts lead to bounds on the
buckling load and, moreover, predicted quite reliably the buckling strength and the
geometry of buckling for shells which buckled axisymmetrically. The results of the present
study complement those of the classical stability analysis and, furthermore, constitute
the exact shell theory solution to the incipient axisymmetric buckling problem without
relaxing geometric constraints or making assumptions concerning the elastic-plastic
interface.

The recent contributions of Hill [5], Hill and Sewell [61 and Sewell [7] to bifurcation
phenomena in general and plastic buckling of columns and plates in particular should
also be mentioned. In a series of papers Hill and Sewell [6] reformulated the basic plastic
column buckling problem from the point of view of Hill's continuum theory of uniqueness
and stability [5]. The Hill and Sewell papers have led to an increased understanding of the
basic incipient column bifurcation problem.

Sewell [7J also investigated plastic plate failure from the point of view of Hill's general
theory [5]. The most important conclusion reached in [7J was that the controversy
surrounding deformation vs. incremental theories of plasticity, in buckling problems.
is very much tied to the shape of the actual yield surface in the vicinity of the bifurcation
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(1 )

(2)

value of stress. In this latter connection it should also be mentioned that since loading is
forced to occur in the entire shell, the use of J 2 deformation theory (see [4] and [7], Part II)
in this problem might again appear to be justifiable. However, Budiansky [8] has shown
that in order for J 2 deformation theory to be a rigorous description of material behavior,
the loading condition j 2 > 0 must be abandoned and instead physical restrictions placed
on the loading surface and the loading path. The limit on the allowable deviation from
proportional loading is not as restrictive as the necessary introduction of a corner in the
loading surface of J 2 deformation theory appearing in a special way. No attempt is made
to incorporate these restrictions in the present analysis. Further attention will, therefore,
be confined to the J 2 incremental theory which is always a mathematically and physically
rigorous description of material behavior.

2. ANALYSIS

2.1 Governing equations

A rational method of investigating buckling problems is provided by the rate equation
approach [9, 10]. Choosing the compressed state as the initial state and specializing the
general rate equations of equilibrium for axisymmetric shells to a geometrically perfect
cylindrical shell of radius R and thickness h buckling under pure axial compression,
we obtain

d 2Mx d 2 vn No
--+N---=O
dx2 dx2 R

d [. Vn J- N +-N = 0dx x R

where dots denote the rate of change of the stress resultants measured per unit length of
middle surface (Fig. 1), Vn is the incipient velocity normal to the middle surface measured
positive inward toward the axis of the shell, x is the length coordinate measured along a
generator ofthe cylinder, and N = uh where u is the compressive stress at which buckling
occurs. The second term in (2), which along with (1) is exact within the framework of a
shell theory, is the effect of incipient circumferential stretching of the middle surface on
the rate equations of equilibrium.

The circumferential membrane stretching term appears naturally in the rate equations
independently of any second-order terms which may also arise because of the details of
the constitutive relations eventually employed. It is not obvious that this term can be
neglected compared to Nx especially since the usual case of classical buckling requires
Nx = 0 by definition. Furthermore, it is also important to note that, as for columns [10],
the axial strain rate rigorously does not appear in (1) and (2) although for the cylindrical
shell it is definitely not zero.

The incipient generalized rates of strain of the middle surface are

. dvxe =
x dx

(3)
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Jjt~
MIDDLE SURFACE~ I
FIG. 1. Sign convention.

(4)

(5)

where Vxis the tangential velocity measured along the generatrix. We remark that ex and
eo are exactly equal to the rates of change of extensions in the axial (meridional) and
circumferential directions, respectively, while Kx is exactly equal to the rate of change of
curvature in the meridional plane, and the rate ofchange ofcurvature of the middle surface
in the circumferential direction is -eo/R [9].

For J 2 incremental theory, the plastic strain rate is given by

BD = F(J2)Sijj2 j 2 > 0

B~=O j2~0

where
Sij = (Tij-1(Tkk(jjj

J 2 = tSijsij

and (Tij is the stress tensor, (jjj is the Kronecker delta and repeated indices denote summation
over the range of values of the index.

Combining (4) with an isotropic linear elastic response in regions of loading, j 2 > 0,
we have

1 .
Bij = "£[(1 +V)Ujj- VUkk(jij] +F(J2)SijJ2

where E and v are, respectively, Young's modulus and Poisson's ratio, and F(J2) can be
determined from a simple tension test:

3[1 1]F(J 2 ) = - ---
4J 2 E T E

E T is the ordinary tangent modulus obtained from the uniaxial stress-strain curve.
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The strain rates at a distance e, measured positive inward from the middle surface,
are given by the usual expressions

(6)

Consistent with the assumption of the preservation of the normal element, the first of (6)
is exact while the second of (6) is approximate and is obtained by neglecting the small term
elR compared to unity in the exact expression [11].

For the shell, when buckling commences from a state of uniaxial compression
(0"x = - 0"), the stress rates in regions ofloading are

E
ax = (5_4v)A._(1_2v)2[(A.+3)€x+ 2(A.-l+2v)€0]

E
ao = (5 _ 4v)A. _ (1- 2V)2 [4A.€0 + 2(A. -1 + 2v)€x]

(7)

(8)

where A. = EIEr .
Substituting (6) and (7) into appropriate expressions for the stress rate resultants, and

integrating through the thickness ofthe shell, it can be shown [4] that in regions ofloading

· [. (2v+A.-l). ]
No = D A.eo+ 2 ex

· rA.+3. (2V+A.-IL ]
N x = Dl-4-ex+ 2 eo

· K(2v+A.-l).
Mo = 2 K x

where

4Eh
D - -:-::---,---,c-:---:-:-----=--:-.

- (5-4v)A.-(1-2v)2

Eh3

K=--------,----,----,-:-=
3[(5-4v)A.-(1-2v)2]

It is necessary to remark here that the expressions given for Mx and IiIx are obtained
by neglecting the small term elR compared to unity when integrating through the shell
thickness, i.e. the trapezoidal shape of an element is ignored. This assumption combined
with that embodied in the second of (6) is equivalent to neglecting small terms containing
ex, eo and Kx in the generalized stress rate-generalized strain rate relations for the shell
material. These combined assumptions are, of course, the ones usually made in the theory
of thin elastic shells [11].

Equations (8) in their present form are used throughout the paper. The membrane
stretching effect then only refers to whether or not the second term in equation (2) is
retained in the analysis. In this manner it is possible to focus attention on, as well as t(
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evaluate, the effect of changes in geometry caused by buckling on the rate equations of
equilibrium apart from any other assumptions.

For the state of stress under consideration, j 2 > 0 implies that at buckling

(9)

Using (7), and the fact that A > 1 and theoretically -1 .:::;; v .:::;; t, it follows that in
terms of strain rates at buckling (9) is equivalent to

(10)

Regardless of the details of the analysis, it is obvious from (10) that if the material is
elastically incompressible, v = t, forcing the loading condition to be just satisfied at
certain critical points will be equivalent to imposing the condition that the axial strain be
stationary at those points.

2.2 Neglecting membrane stretching

When membrane stretching is neglected, equation (2) is replaced by

dIVx = 0
dx

or the equivalent expression

IVx = constant = -IV = -iFh

(11)

(12)

(14)

where IV is the rate of change of the applied compressive load. Classical buckling means
IV =0.

Substituting (3, 8, 10) into (1) leads to the following equation:

K(A+3) d4 vn d2 vn 4Ehvn -2(2v+A-l) IV
4 dx4 + N dx 2 +(A+3)R2 A+3 R (13)

The particular solution to (13) is

P __ (2v+A-l)R'
Vn - 2E (J

which is the velocity of uniform outward expansion of the shell due to the compressive
stress rate iF.

The complementary solution to (13), v~, is the non-uniform velocity field at bifurcation.
For a simply supported cylinder of length L

x = 0, x = L; v~ = 0, Atx = (\
it was found [4] that

. nltan1t
VC = Tsm--x

n L

where T is a constant to be determined and mtan is an integer defined by

(15)

(16)
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(17)

(19)

The critical load under which (15) and (16) occurs is given by

2Eh2 1
N tan = utanh = R {3[(5-4v)A-(1-2v)2]}t

It is important to recall that using classical concepts (15, 16 and 17) was shown to be
the solution for a very useful model of an actual cylinder and it was concluded that (17)
was a lower bound to the actual buckling load. In addition, a very minor restriction on the
tangent modulus at buckling appeared and it was not possible to determine the multi
plicative constant in the velocity field [4]. The present solution removes all previous
restrictions and provides a rigorous independent proof that (17) is a lower bound to the
buckling load for a perfect cylinder.

Since equations (15-17) were derived on the basis that j 2 > 0 everywhere it remains
to force this condition to be true. In terms of the solution, j 2 > 0 implies

_ 2Ev~ n5-4v)A-(1-2v)2 +e(2_V)(mtan1l:)2]+& > 0 (18)
(5-4v)A-(1-2vfl (A+3)R L

Note in (18) that if the loading condition is satisfied at the critical locations when
v~ = T and e = h/2 (inner surface at center of inward wave) then it will be satisfied
everywhere. Hence, setting j 2 = 0 at the above critical locations and using (16) and (17)
results in

R&(A +3){ 1 }
T = 2E 1+3(2-v){utanl[E(h/R)]}

The total incipient velocity field from the pre-buckled compressed shape IS thus
uniquely given by

v _ R&{ (A+3) sin[(mtan1l:x)/L] -(2V+A-l)}
" - 2E 1+3(2 - v){utan/[E(h/R)]}

(20)

It is interesting that v" is purely outward (v" < 0) if buckling occurs at a value of
A> Ao where

or for

A
O

= 11-16v + [(1l-16v)2 - 48(1- 2V)2]t
6

(21)

v = 0'5

v = 0·33

v=O

AO = 1

Ao = 1·82

Ao = 3·26

However, the outward nature of the total v" is not what is meant by outward buckling
observed in tests. Rather, outward buckling usually means that when the uniform outward
movement due to radial expansion is subtracted from the total displacement pattern,
outward waves predominate over inward waves. Or equivalently, if the increments of the
waveform displacement from each successive state are summed, the shell will show a
pronounced outward movement. In this sense the results of [4] give more a picture of the
final geometric pattern to be expected in tests while the present results indicate no preference
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(23)

(25)

for outward or inward buckling. The reason for this is that no account has been taken of
unloading. Since the centers of the inward waves at the inner surface of the shell are getting
ready to unload, this will increase their stiffness compared to the stiffness of the outer
waves. If an analysis was carried out for additional load increments beyond the incipient
state, it would have to show that outward waves grow at a faster rate than inward waves.

If we let UI be the wave form displacement measured positive inward, then initially

v~ = u1 (22)

Hence, it follows from (15, 19 and 22) that

VC _ T _ U _ RcT(A+3){ 1 }
nmax - - Ic - 2E 1+3(2- v){eTtan/[E(h/R)]}

where ulc is the rate of displacement at the center of the inward wave. Using (17) we can
rewrite (23) as

h cT h deT 1
- -. = - -- = -[{3[(5-4v)A+(1-2vf]}t +6(2- v)] (24)
eTtanUlc eTtandulc A+3

It is immediately obvious from (24) that the applied load must increase beyond eTtan
in order to continue the deformation. Furthermore, the right hand side of (24) decreases
with increasing Aand very quickly becomes less than unity. It is also evident, from setting
j 2 = 0 at v~ = T and ~ = h/2, that equation (24) gives the minimum incipient slope of the
load-deflection curve emanating from eTtan, equation (17).

The analogous result to (24) for typical column sections is [3]

h deT {8 Circular
- - = 6 Rectangular
eTtan duc 2 Idealized H-section

where Uc is the lateral deflection at the column center and h is the distance between extreme
fibers in bending.

Figure 2 is a typical qualitative representation of known load-deflection behavior for
columns [3] and conjectured behavior for cylindrical shells which buckle axisymmetrically.
The curve for the shell was drawn as being typical by comparing the initial slopes, (24) to
(25), coupled with the results of carefully performed experiments [4]. In addition, one could
also argue without making detailed calculations that the expression for the slope at the
next load increment beyond eTtan can not be radically different than (24) because only a
very small portion of the inward waves would have unloaded and the geometry would
not have appreciably changed. Since for real materials, Et decreases (A increases) as the
average stress increases, (24) is an indication that the slope of the load-deflection curve
would continue to decrease. Note that for columns, where numerical calculations do show
that the slope is continually decreasing (large deflection effects ignored), one cannot use
this argument since the right side of (25) is independent of the tangent modulus at buckling.

Hence, since even for perfect columns the maximum load is not very much larger than
the tangent modulus load [3], it is concluded that for geometrically perfect axially
compressed cylindrical shells tedious step-by-step calculations would show that there is a
negligible difference between the maximum load and Ntan . Of course, the actual difference
depends on the details of the uniaxial stress-strain curve but for real materials the difference
will be very small.
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FIG. 2. Qualitative load-deflection behavior.
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2.3 Membrane stretching included

Some caution must be exercised before equation (2) is used in an analysis. Integrating
(2) we have

Nx - e6N = constant (26)

When the shell does not buckle Nx = - N although e6 is clearly not zero. Hence the
constant in (26) is not always simply equal to the rate of change of the applied load. It is
not difficult to show, however, that in the reduced form of (26) only the nonhomogeneous
part of the velocity field enters as follows

(27)

where

R

and Vnl is the buckling velocity to be determined.
To facilitate the solution let

where Nxl is the change due to membrane stretching. Hence (27) becomes

(28)
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Combining (1, 3, 8 and 28) the differential equation governing the buckling velocity
is found to be

K(II.+3) d4 vn l d2vn1 4Eh [ al
4 dx4 +N dx2 + (1I.+3)R 2 1 + 2E(2v+iI.-l)J Vn1 = O. (29)

Of course, if interest was in the total incipient velocity field, v~ given by (14) would be
added to Vn1 • It is immediately apparent that the entire membrane stretching effect is
contained in the last term of (29). Furthermore, for the classical elastic case, II. = 1, it is
obvious that the membrane effect will be negligible. However, it is not obvious that when
buckling occurs at a sufficiently small value of tangent modulus (Ie large), that the membrane
effect will be small enough to be neglected.

Solving the eigenvalue problem posed by equation (29) and the boundary conditions
for a simply supported shell, we find

_~ = 2v+le-l (K)! J( 2V+iI.-l)2~+ I}! (30)
a tan 2R Eh 1 2R Eh

mn = mtann [1 +~(2v+iI.-l)l~ (31)
L L 2E J

(32)

(33)

(34)

(35)

where T1 is a constant to be determined and mtann/L and a tan are given, respectively, by
(16) and (17).

Although (30) is exact, it is cumbersome. The following are useful approximations
to (30):
To terms of order (h/R)2,

a _ (2V+iI.-l)atan [ (2V+iI.-l)atan]--1+ -1+ -
a tan 2 2E 2 4E

To terms of order h/R,

a (2V + iI. -1) a tan-=1+ -.
a tan 2 2E

In order to obtain an idea of the orders of magnitude involved, equation (34) is shown
below in a reduced form for v = t

a = (1+~~Ie!)atan.
A representative worst value for the coefficient of a tan in (35) would be when, say,

iI. = 100 and h/R = -to. Hence

a = 1·167atan . (36)

However, using equation (17) to predict the stress for first bifurcation, instead of (36),
does not mean that the error involved will be on the order of 17 per cent. In fact, using
(36) will lead to a very slight, almost undetectable, increase in the buckling prediction.
It must be emphasized that the actual difference between (36) and (17) will be almost
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(38)

(39)

wiped out because of the large changes in tangent modulus due to small increases in stress.
Precisely this same effect is responsible for the closeness of reduced modulus and tangent
modulus predictions for columns and cylindrical shells [4] and for the fact that columns
exhibit a maximum load instead of approaching the reduced modulus load asymptoti
cally [2,3].

Forcing the loading condition to be satisfied leads to

T _ R&(A+.3){ 1 }(37)
1 - 2E 1+3(2-v){atan/[E(h/R)]} +(2...,-v)a/E[i(2v+A-l)[atan/[E(h/R)]} -1]

where the effect of membrane stretching is exhibited in the last term of the denominator
of (37). In order to arrive at the form (37) it was necessary to use

\, a It aL1+2E(2v+A-l)J ~ 1+4E(2v+A-l)

which is sufficiently accurate for the purposes of this discussion.
It is not difficult to show that the membrane effect is quite small, in general, due to

the presence of the coefficient a/E. Moreover, if buckling occurs at a value of A such that

i(2v+A-l) E~~i~) > 1

the initial slope of the load-deflection curve computed from (22) and (37) will be larger,
although only very slightly so, than that given by equation (24) for the same value of A.
For completeness, inequality (39) leads to

A> 13-14V+[(13-1;v)2- 21(1-2v)2]t = {~'5 :: g~3
8·4 v = 0

(40)

Hence, the preceding calculations show that the membrane stretching effect is indeed
generally small and can be neglected in the rate equations of equilibrium.

3. CONCLUDING REMARKS

The analysis has shown that bifurcation of equilibrium positions can begin at the load
predicted by (17) but under increasing load, equation (24). To make the definite statement
that bifurcation does begin at (17) probably requires the use of either a Duberg and
Wilder [3] type approach, i.e. computing load-deflection curves for imperfect systems and
allowing the degree of imperfection to go to zero, or perhaps awaits the development of as
yet undiscovered minimum principles.

It is worthwhile to mention again that (1) forcing the loading condition to be satisfied
removes the indeterminacy in the velocity field of the classical analysis; (2) the difference
between the maximum load that a perfect system can withstand and the load predicted
by equation (17) is likely to be negligible; and (3) for real materials the effect of incipient
circumferential membrane stretching on the load for first bifurcation and on the slope of
the load-deflection curve can be neglected.

Results presented herein are the complete and formal generalization of tangent modulus
theory for columns to axially compressed cylindrical shells which buckle axisymmetrically.
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Resume-Des resultats analytiques sont presentes relativement au flambage plastique symetrique a l'axe
d'enveloppes cylindriques comprimees axialement ayant lieu sous des charges croissantes. Le taux d'accroisse
ment de la charge est determine en forcant la condition de charge des accroissements J2 de la theorie de la
plasticite a etre satisfaite en tout point de l'enveloppe. Les resultats completent sont trouves en employant les
concepts de stabilite classique. L'analyse constitue la generalisation formelle de )a theorie du module tangentiel
pour Ie comportement d'une colonne en plastique envers des enve)oppes cylindriques comprimees axialement.

Zusammenfassung-Analytische Resultate werden gegeben flir die achsensymmetrische plastische Knickung
in der Achsenrichtung gedriickter Zylinderschalen bei ansteigender Belastung. Die Zunahme der Belastung
wird bestimmt, inde!Jl man den Belastungszustand J2 der zunehmenden Plastizitatstheorie an jeder Stelle der
Schale befriedigt. Die Resultate sind komplementar mit denen die mittels klassischer Stabilitatskonzepte
gewonnen wurden. Die Analyse bildet die formelle Verallgemeinerung der Tangentenmodultheorie flir das
Verhalten plastischer Saulen flir zylindrische Schalen.

A6cTpaKT-npHBOJllITCll aHlUIHTH'IeCKHe pe3ynbTaTbI HCCJleJlOBllHHJI ocecHMMeTpH'IHorO BbIny'IHBllIIHll
UHJlHHJlPH'IecKOit 060nO'lKH, HarpY)J(eHHoit oceBOit cHnoit, Bbl3bIBlleeMoro npHpOCToM HarpY3KH. CKOPOCTb
npHpocTa Harpy3KH 3aJlaHa TaK, 'ITO BO Beeit 060nO'IKe BbInOJlHeHO YCJlOBHe HarpY)J(eHHlI B cMbICJIe J.,
no TeopHH nJlaCTH'IecKoro Te'leHHlI. Pe3ynbTaTbI JlonOJlHlIlOT OTHOCHTeJlbHble pe3YJlbTaTbI, OCHOBllHHble
Ha KJlaCCH'IecKHx npeJlCTaBneHHlIX 06 YCTOit'lHBOCTH. PaC'leTbI JlalOT B03MO)J(HOCTb cPOPMlUIbHO 0606I1UiTb
TeopHIO KacaTeJIbHOrO MOJlyna B nODeJleHHH nnaCTH'IecKHX KonOHH Ha ~HnHHJlPH'lecKHe 06ono'IKH, C)J(aTbIe
oceBOit cHnoil:.


